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If, in addition, it is assumed that the load moves at uniform velocity and the solutions 
on the left and right of it are harmonic, two more critical velocities are defined 

8' = j= (E/P)": XI' = f ((N/@fl) + (Z~Cl@P)))"' 
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ON THE LAW OF ANGULAR MOt4ENTUM VARIATION OF A 
SPHERE ROLLING ON A STATIONARY SURFACE* 

A.S. SUMBATOV 

The rolling of a homogeneous sphere without friction on a stationary 
surface is considered. The forms of surfaces are established, and the axes 
corresponding to them, relative to which the sphere angular momentum variation 
is determined, are defined by the same differential equation, as if the 
axes were stationary. 

1. The theorem of the variation of the angular momentum 
ative to an arbitrary pole A has the form /l/ 

K, of a mechanical system rel- 

K,'+Mv,Xvg=~momAR+r,mom,F (1.1) 

Here v,, is the velocity of the point A in fixed space, MV~ is the momentum of the 
body, and the right-hand side of (l.l), is the sum of the principal moments about the point 
A of the constraint reactions and the active forces operating on the system. 

Suppose some axis AL constantly pass through the moving point A, and let e be the unit 
vector of that axis. If the constraints at each instant of time allow a virtual rotation of 
the system as a single rigid body about the AL axis and the kinematic condition 

M(v,, vA x e)+ (4,e') = 0 (1.2) 
is satisfied /2/, then from (1.1) we have the scalar equation 

*Prikl.Matm.Mekhan.,47,5,867-869,1983 
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K' AL - - 2 momAL F 

which expresses the law of angular momentum variation of the system about the AL axis, as if 
that axis was stationary. The additional condition 

leads to the generalized integral of the areas 

KAL=(KA,e)= const 

More particular kinematic conditions than (1.2) are given in /1,3/. 
Note that Eq.(l.2) is independent of the choice of the pole on the AL axis. Indeed, let 

P be an arbitrary point on the AL axis. We have 

AP= ae, vP = vA + 6.67 f de', K,=KA+iWvgxoe 

and, consequently, 
M(vo.vp x e)-t-Wp.e’) =M(vo,v,x e)+(KA, e) 

To determine the variation of the angular momentum of the system in the form (1.3) it is 
necessary to select the respective pole and the direction of the axis. However, how this 
should be done in any specific case, is not known, since there is no general rule. Usually 
the stationary axis (v*= a'= 0), or the Koenig axis(?. A z~.G.e'== 0). is taken as AL. Condition 
(1.2) is satisfied automatically, but not always among the virtual displacements is there a 
rotationofthe system as a single rigid body about the chosen axis, for example, in the class- 
ical problem of the rolling a rigid body bounded by a regular convex surface on a stationary 
base. On the other hand, in this problem the constraints (no slip) allow virtual rotation of 
the body about an arbitrary axis AL drawn through the contact point A of the body with the 
supporting surface, and it is only necessary to determine the direction of that axis so that 
kinematic condition (1.2) is satisfied for all possible motions of the body. 

We stress that for a given motion of the system , condition (1.2) may be considered as the 
differential equation with respect to e(t) which, obviously always has a solution. But the 
motion of the system is not known in advance, hence it is reasonable to assume that the unknown 
position of the pole and the direction of the movable axis are completely determined by con- 
stant parameters and the system configuration. In the problem of a rolling body this means 
that the unit vector of the AL axis is a function of, for instance, the Gaussian coordinates 
of the point A of the contacting surfaces and of the angle between the respective principal 
directions of these surfaces at the point A. 

Below, we consider the problem of the rolling of a homogeneous sphere in which the sel- 
ection of the moving direction in this formulation is fully analyzed. The problem of the 
integrability of the equations of rolling homogeneous spheres was investigated in /1,3-8/. 

2. We will introduce the following notation: r is the geometric radius, p is the radius 
of inertia of the sphere, k, and k, are the principal curvatures, U, u are the Gaussian co- 
ordinates of the supporting surface, AXYZ is the Darboux trihedron /9/ with origin at the 
point A of the sphere and supporting surface contact, kg1 and kg1 are the geodesic curvatures 
of the lines of curvature of the latter,@,, v*; 0) are the projections on the AXYZ axes of the 
velocity of the pole A,cp is the angle of rotation of the sphere about the normal AZ to the 
Darboux trihedron, and (c,&r) are the components in AXYZ axes of the unit vector e of the AL 
axis. 

From the kinematic formulas for the rolling of one surface on another /l-,7/, we have the 
following expressions in AXYZ axes for the angular velocity components of the trihedron AX 
YZ 

51, = - kSu,, 8, = k,v,, S2, = kr,u, + kg+= 

and for the angular velocity of the sphere 

Y= - (k, + r-l) us. o, = (k, + r-1) q, 01 = 'P' f kgl+ i- be++ 

From symmetry consideration it follows that e=e(u,q . The absolute velocity ofrotation 

of the AL axis is specified by the components 

Having set up expression (l-2), we can equate to zero the quadratic form of the quantities 

9, 01, 8'* that for any mutual position of sphere and support can take arbitrary values. Eg- 
uating to zero the coefficients of that form we obtain the set of equations 
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aSiau + akgt = 0, act/au - Bkar = 0 (2.11 

e/au - ak, = 0, ep/ao - pk, = 0 (2.2) 

P* (k, - kd Y + w + 3 [ (6 + ‘1 (g + akgr) - W+ + 4) ($ - pgl)] = 0 

which we supplement by two more equations 

(2.3) 

(2.4) 

that are obtained by differentiating with respect to u and u the identity 

a*+ p* + 1' = 1 (2.5) 

using Eqs.(2.1) and (2.2). The set of equations (2.1)-(2.5) is used to determine theunknown 
functions a,fl,Y. 

Eliminating in Eqs.(2.3) and (2.4) the quantities 

we obtain a&1 (k, - k,) = 0. If in the neighbourhood of point A of the supporting surface we 
have k= 11 , then that neighbourhood is spherical /lo/, and condition (1.2) is satisfied 
by the axis of constant direction /3/, otherwise agO=O. Let us analyze successively all 
possibilities that follow from this, assuming that the conditions in the cases enumerated 
below are satisfied in some neighbourhood of the point A on the supporting surface. 

Let cc=p=O. Then by Eq.(2.3), kz = k,, the supporting surface is a sphere, and the 
AL axis is the common normal to the contacting spherical surfaces. 

Letp=v= O(the case when a= y= Ois similar). It follows from Eqs.(2.1)-(2.3) that 
kel = kl, = k, = 0, and the supporting surface is arbitrarily cylindrical with the AL axis dir- 

ected along its generatrix. 
Let p=O, ap*O. According to (2.2) we have k, = k, = 0, and the supporting surface is 

plane. 
In these cases condition (1.2) can be satisfied by selecting the AL axis, which translates 

in stationary space, while the geometric properties of the supporting surface are in no way 
connected with the parameter of the sphere rolling on it. Let us examine the last possibility. 

Let a= 0, by*0 (the case when ,3= 0, ayfois similar). From Eqs.(2.1) and (2.2) and 
identity (2.5) it follows that 

B = cos f, y = sin f, f = f (0) (2.6) 
k, = I’, kg, = 0 (f’ = df/du) (2.7) 

The function f(u) in (2.6) is not arbitrary, it is constrained by the requirement of 
kinematic feasibility of the sphere rolling without slip. For instance, when the sphere rolls 
on the inner side of a spherical surface it is obviously necessary that /'>--I. 

Equations (2.7) mean that the set of curvature lines u= const consists of congruentcurves 
which are geodesics on the supporting face, hence they are plane lines. Such a surface is 
called a cut /ll/. 

From Eq.(2.3), taking (2.6) and (2.7) into account, we have 

k (P' + r')(V + f) kel ctgf - r'f' 
1 
= 

(f++f’)rf’+PI 

Moreover the Liouville formula for the total curvature /ll/ 

(2.8) 

k,k, = & - 2 - (kg,)* - (kgr)’ 

where d#= (Edu)a+(Gdv)*is a linear element of the surface, yields 

(P + r*) W'+ i)k& ctg 1- (rf)' 
7 5 f& - (kg,)’ ( ++rf,+v (2.9) 

where G= G(v) by virtue of the condition ka,= 0. 
Formulas (2.7)-(2.9) locally define the supporting surface geometry. The solutions of 

the form kg,,= kgx(u) of Eq.(2.9) are satisfied by some class of surfaces of revolution. Actually, 
in this case the lines u=const have a constant curvature 
and moreover are parallel, 

1/(-, i.e. they arecircles, 

support surface. 
since the lines u=coast orthogonal to them are geodesics on the 

Note also that the case 

in whichtheright-hand side of (2.8) becomes indeterminate, 
sphere on the inner side of a sphere of radius r(p*+r')/p'. 

corresponds to the rolling of the 
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EVOLUTION OF A CONTACT DISCONTINUITY IN 
THE BAROTROPIC FLOW OF A VISCOUS GAS* 

V.V. SBELUKIIIN 
Single-valued solvability as a whole is established with respect to time 
for an initial boundary value problem with discontinuity data for the 
equations of the one-dimensional barotropic flow of a viscous polytropic 
gas, and the behaviour of the solution is investigated, when the time 
increases without limit. The line of contact discontinuity is simulated 
by the,trajectory of a piston of small mass located between two gases. In 
particular, if the discontinuity separates one and the same gas, it is 
shown that the pressure discontinuity can only disappear in an infinite 
time, and the discontinuity decays exponentially. 

Suppose that at the initial instant t- 0 the region -t<E <O is filled with a gas of 
viscosity p, with equation of state pl= a#, and the regionO<~<lis filled with a gas 
with corresponding characteristics p, and PI-(I~P~, where Bi.~.yt>i@= I, 2) are positive 
constants, p is the pressure and P is the density. Below, the velocity is denoted by U. 

The behaviour of the medium in region -i<E<lat t>O is defined as follows. The 
motion of each gas outside the line of contact discontinuity 6 = C(t),C(O)=O is defined by the 
equations 

P (ut + us,) = PU& - Pt, Pt + (PN~ - 0 (1) 

The conditions of contact discontinuity on the unknown line c-C(t) have the form 

IUI = IPUE - PI = 0. C’ (0 = 88 (14 - u (C w -I- 0.4 - u w (t) - 0.0) (2) 

Further, we will assume that at the points E=-i,&-i the conditions of adhesion 
are satisfied 

u (-1, t) = u (1. ti = 0 (3) 

The functions 0, (6). p*(E). 

u (E, 0) = s, (El, P (f.6) = PO (E) (4) 

that specify the initial conditions are assumed to be smooth when E#O. while at the point 
E= 0 the continuity of the functions p,,p# is not required. 

Problem (l)-(4) is conveniently solved in Lagrangian mass variables 
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